traductor

martes, 6 de agosto de 2013

Función de las neuronas

Las neuronas tienen la capacidad de comunicarse con precisión, rapidez y a larga distancia con otras células, ya sean nerviosas, musculares o glandulares. A través de las neuronas se transmiten señales eléctricas denominadas impulsos nerviosos.
Estos impulsos nerviosos viajan por toda la neurona comenzando por las dendritas, y pasa por toda la neurona hasta llegar a los botones terminales, que pueden conectar con otra neurona, fibras musculares o glándulas. La conexión entre una neurona y otra se denomina sinapsis.
Las neuronas conforman e interconectan los tres componentes del sistema nervioso: sensitivo, motor e integrador o mixto; de esta manera, un estímulo que es captado en alguna región sensorial entrega cierta información que es conducida a través de las neuronas y es analizada por el componente integrador, el cual puede elaborar una respuesta, cuya señal es conducida a través de las neuronas. Dicha respuesta es ejecutada mediante una acción motora, como la contracción muscular o secreción glandular.
El impulso nervioso

A. Vista esquemática de un potencial de acción ideal, mostrando sus distintas fases. B. Registro real de un potencial de acción, normalmente deformado, comparado con el esquema debido a las técnicas electrofisiológicas utilizadas en la medición.
Las neuronas transmiten ondas de naturaleza eléctrica originadas como consecuencia de un cambio transitorio de la permeabilidad en la membrana plasmática. Su propagación se debe a la existencia de una diferencia de potencial o potencial de membrana (que surge gracias a las concentraciones distintas de iones a ambos lados de la membrana, según describe el potencial de Nernst10 ) entre la parte interna y externa de la célula (por lo general de -70 mV). La carga de una célula inactiva se mantiene en valores negativos (el interior respecto al exterior) y varía dentro de unos estrechos márgenes. Cuando el potencial de membrana de una célula excitable se despolariza más allá de un cierto umbral (de 65mV a 55mV app) la célula genera (o dispara) un potencial de acción. Un potencial de acción es un cambio muy rápido en la polaridad de la membrana de negativo a positivo y vuelta a negativo, en un ciclo que dura unos milisegundos.11
Propiedades electrofisiológicas intrínsecas
Hasta finales de los años 80 del siglo XX el dogma de la neurociencia dictaba que sólo las conexiones y los neurotransmisores liberados por las neuronas determinaban la función de una neurona. Las investigaciones realizadas por Rodolfo Llinás con sus colaboradores durante los años 80 sobre vertebrados pusieron de manifiesto que el dogma mantenido hasta entonces era erróneo. En 1988, Rodolfo Llinás presentó el nuevo punto de vista funcional sobre la neurona en su artículo "The Intrinsic Electrophysiological Properties of Mammalian Neurons: Insights into Central Nervous System Function"12 y que es considerado un manifiesto que marca el cambio de mentalidad en neurociencia respecto al aspecto funcional de las neuronas con más de 1250 citas en la bibliografía científica. El nuevo punto de vista funcional sobre la neurona quedo resumido en lo que hoy es conocido por la Ley de Llinás.
Neurosecreción
Las células neurosecretoras son neuronas especializadas en la secreción de sustancias que, en vez de ser vertidas en la hendidura sináptica, lo hacen en capilares sanguíneos, por lo que sus productos son transportados por la sangre hacia los tejidos diana; esto es, actúan a través de una vía endocrina.13 Esta actividad está representada a lo largo de la diversidad zoológica: se encuentra en crustáceos,14 insectos,15 equinodermos,16 vertebrados,13 etc.
Transmisión de señales entre neuronas
Un sistema nervioso procesa la información siguiendo un circuito más o menos estándar. La señal se inicia cuando una neurona sensorial recoge información. Su axón se denomina fibra aferente. Esta neurona sensorial transmite la información a otra aledaña, de modo que acceda un centro de integración del sistema nervioso del animal. Las interneuronas, situadas en dicho sistema, transportan la información a través de sinapsis. Finalmente, si debe existir respuesta, se excitan neuronas eferentes que controlan músculos, glándulas u otras estructuras anatómicas. Las neuronas aferentes y eferentes, junto con las interneuronas, constituyen el circuito neuronal.17
Velocidad de transmisión del impulso
El impulso nervioso se transmite a través de las dendritas y el axón. La velocidad de transmisión del impulso nervioso, depende fundamentalmente de la velocidad de conducción del axón, la cual depende a su vez del diámetro del axón y de la mielinización de éste. El axón lleva el impulso a una sola dirección y el impulso es transmitido de un espacio a otro. Las dendritas son las fibras nerviosas de una neurona, que reciben los impulsos provenientes desde otras neuronas. Los espacios entre un axón y una dendrita se denominan «espacio sináptico» o hendidura sináptica. En las grandes neuronas alfa de las astas anteriores de la médula espinal, las velocidades de conducción axonal pueden alcanzar hasta 120 m/s. Si consideramos que una persona normal puede llegar a medir hasta 2.25 metros de altura, al impulso eléctrico le tomaría únicamente 18.75 milisegundos en recorrer desde la punta del pie hasta el cerebro.
Clasificación
Aunque el tamaño del cuerpo celular puede ser desde 5 hasta 135 micrómetros, las prolongaciones o dendritas pueden extenderse a una distancia de más de un metro. El número, la longitud y la forma de ramificación de las dendritas brindan un método morfológico para la clasificación de las neuronas.
Según la forma y el tamaño

Célula piramidal, en verde (expresando GFP). Las células teñidas de color rojo son interneuronas GABAérgicas.
Según el tamaño de las prolongaciones, los nervios se clasifican en:3
Según la polaridad
Según el número y anatomía de sus prolongaciones, las neuronas se clasifican en:3
  • Unipolares: son aquéllas desde las que nace sólo una prolongación que se bifurca y se comporta funcionalmente como un axón salvo en sus extremos ramificados en que la rama periférica reciben señales y funcionan como dendritas y transmiten el impulso sin que éste pase por el soma neuronal. Son típicas de los ganglios de invertebrados y de la retina.
  • Bipolares: poseen un cuerpo celular alargado y de un extremo parte una dendrita y del otro el axón (solo puede haber uno por neurona). El núcleo de este tipo de neurona se encuentra ubicado en el centro de ésta, por lo que puede enviar señales hacia ambos polos de la misma. Ejemplos de estas neuronas se hallan en las células bipolares de la retina (conos y bastones), del ganglio coclear y vestibular, estos ganglios son especializados de la recepción de las ondas auditivas y del equilibrio.
  • Multipolares: tienen una gran cantidad de dendritas que nacen del cuerpo celular. Ese tipo de células son la clásica neurona con prolongaciones pequeñas (dendritas) y una prolongación larga o axón. Representan la mayoría de las neuronas. Dentro de las multipolares, distinguimos entre las que son de tipo Golgi I, de axón largo, y las de tipo Golgi II, de axón corto. Las neuronas de proyección son del primer tipo, y las neuronas locales o interneuronas del segundo.
  • Pseudounipolares (monopolar): son aquéllas en las cuales el cuerpo celular tiene una sola dendrita o neurita, que se divide a corta distancia del cuerpo celular en dos ramas, motivo por cual también se les denomina pseudounipolares (pseudos en griego significa "falso"), una que se dirige hacia una estructura periférica y otra que ingresa en el sistema nervioso central. Se hallan ejemplos de esta forma de neurona en el ganglio de la raíz posterior.
  • Anaxónicas: son pequeñas. No se distinguen las dendritas de los axones. Se encuentran en el cerebro y órganos especiales de los sentidos.
Según las características de las neuritas
De acuerdo a la naturaleza del axón y de las dendritas, clasificamos a las neuronas en:3
  • Axón muy largo o Golgi de tipo I. El axón se ramifica lejos del pericarion. Con axones de hasta 1 m.
  • Axón corto o Golgi de tipo II. El axón se ramifica junto al soma celular.
  • Sin axón definido. Como las células amacrinas de la retina.
  • Isodendríticas. Con dendritas rectilíneas que se ramifican de modo que las ramas hijas son más largas que las madres.
  • Idiodendríticas. Con las dendritas organizadas dependiendo del tipo neuronal; por ejemplo, como las células de Purkinje del cerebelo.
  • Alodendríticas. Intermedias entre los dos tipos anteriores.
Según el mediador químico
Las neuronas pueden clasificarse, según el mediador químico, en:18
Según la función
Las neuronas pueden ser sensoriales, motoras o interneuronas:
  • Motoras: Son las encargadas de producir la contracción de la musculatura.
  • Sensoriales: Reciben información del exterior, ej. Tacto, gusto, visión y las trasladan al sistema nervioso central.
  • Interneuronas: Se encargan de conectar entre las dos diferentes neuronas.
Doctrina de la neurona

Micrografía de neuronas del giro dentado de un paciente con epilepsia teñidas mediante la tinción de Golgi, empleada en su momento por Golgi y por Cajal.
La doctrina de la neurona, establecida por Santiago Ramón y Cajal a finales del siglo XIX, es el modelo aceptado hoy en neurofisiología. Consiste en aceptar que la base de la función neurológica radica en las neuronas como entidades discretas, cuya interacción, mediada por sinapsis, conduce a la aparición de respuestas complejas. Cajal no solo postuló este principio, sino que lo extendió hacia una «ley de la polarización dinámica», que propugna la transmisión unidireccional de información (esto es, en un sólo sentido, de las dendritas hacia los axones).19 No obstante, esta ley no siempre se cumple. Por ejemplo, las células gliales pueden intervenir en el procesamiento de información,20 e, incluso, las efapsis o sinapsis eléctricas, mucho más abundantes de lo que se creía,21 presentan una transmisión de información directa de citoplasma a citoplasma. Más aún: las dendritas pueden dirigir una señal sináptica de forma centrífuga al soma neuronal, lo que representa una transmisión en el sentido opuesto al postulado,22 de modo que sean los axones los que reciban de información (aferencia).
Redes neuronales
Una red neuronal se define como una población de neuronas físicamente interconectadas o un grupo de neuronas aisladas que reciben señales que procesan a la manera de un circuito reconocible. La comunicación entre neuronas, que implica un proceso electroquímico,10 implica que, una vez que una neurona es excitada a partir de cierto umbral, ésta se despolariza transmitiendo a través de su axón una señal que excita a neuronas aledañas, y así sucesivamente. El sustento de la capacidad del sistema nervioso, por tanto, radica en dichas conexiones. En oposición a la red neuronal, se habla de circuito neuronal cuando se hace mención a neuronas que se controlan dando lugar a una retroalimentación («feedback»), como define la cibernética.
Cerebro y neuronas
El número de neuronas en el cerebro varía drásticamente según la especie estudiada.23 Se estima que cada cerebro humano posee en torno a 1011 neuronas: es decir, unos cien mil millones. No obstante, Caenorhabditis elegans, un gusano nematodo muy empleado como animal modelo, posee sólo 302.;24 y la mosca de la fruta, Drosophila melanogaster, unas 300.000, que bastan para permitirle exhibir conductas complejas.25 La fácil manipulación en el laboratorio de estas especies, cuyo ciclo de vida es muy corto y cuyas condiciones de cultivo poco exigentes, permiten a los investigadores científicos emplearlas para dilucidar el funcionamiento neuronal, puesto que el mecanismo básico de la actividad neuronal es común al de nuestra especie.11
Evolución
En los celentéreos más primitivos, los hidrozoos, se ha descrito una actividad neural no originada de neuronas ni músculos, sino más bien de una comunicación de células epiteliales que han sido llamadas neuroides ya que aun siendo epitelio tienen características de neuronas como lo es el percibir y transmitir estímulos. De igual manera actos motores de ciertos pólipos como lo es cerrar y mover sus tentáculos y ventosas provienen de potenciales eléctricos que se propagan de una célula a otra en la capa epitelial de rostral a caudal.
Además, en los embriones vertebrados se puede observar la neurulación, que no es otra cosa que la conversión de células epiteliales a células neurales y su migración hacia el interior del conducto. Todo esto hace pensar que las células nerviosas se diferenciaron por una transformación gradual de células de revestimiento, que en los sistemas primitivos desempeñaron una función de iniciadoras de actividad transmisible a células adyacentes. Se supone que la neurona actual solo difiere de estas primeras por la emisión de su largo filamento axial para comunicarse con células distantes.26
Redes neuronales artificiales
El conocimiento de las redes neuronales biológicas ha dado lugar a un diseño empleado en inteligencia artificial. Estas redes funcionan porque cada neurona recibe una serie de entradas a través de interconexiones y emite una salida. Esta salida viene dada por tres funciones: una función de propagación que por lo general consiste en el sumatorio de cada entrada multiplicada por el peso de su interconexión; una función de activación, que modifica a la anterior y que puede no existir, siendo en este caso la salida la misma función de propagación; y una función de transferencia, que se aplica al valor devuelto por la función de activación. Se utiliza para acotar la salida de la neurona y generalmente viene dada por la interpretación que queramos darle a dichas salidas.27
Véase también

No hay comentarios:

Publicar un comentario